Surface-associated MUC5B mucins promote protease activity in Lactobacillus fermentum biofilms

نویسندگان

  • Claes Wickström
  • Luis Chávez de Paz
  • Julia R Davies
  • Gunnel Svensäter
چکیده

BACKGROUND Mucosal surfaces are coated with layers of mucus gel that protect the underlying tissues and promote colonization by members of the commensal microflora. Lactobacillus fermentum is a common inhabitant of the oral cavity, gastrointestinal and reproductive tracts and is one of the most important lactic acid bacteria contributing to the formation of a healthy intestinal microflora. We have investigated the proteolytic activity in L. fermentum in response to interactions with the MUC5B mucin, which is a major component of mucus gels at sites colonized by this micro-organism. METHODS Biofilms of Lactobacillus fermentum were established in mini-flow cells in the presence or absence of human salivary MUC5B. The proteolytic activity of biofilm cells was examined in a confocal scanning laser microscope with a fluorescent protease substrate. Degradation of MUC5B by L. fermentum was analysed using SDS-PAGE followed by Western blotting with antisera raised against the MUC5B peptide. Cell surface proteins differentialy expressed in a MUC5B-rich environment were identified with the aid of comparative two-dimensional electrophoresis followed by LC-MS/MS. RESULTS Lactobacillus fermentum adhered well to surfaces coated with MUC5B mucin and in biofilms of L. fermentum formed in a MUC5B environment, the proportion of proteolytically-active cells (47 ± 0.6% of the population), as shown by cleavage of a fluorescent casein substrate, was significantly greater (p < 0.01) than that in biofilms formed in nutrient broth (0.4 ± 0.04% of the population). Thus, the presence of MUC5B mucins enhanced bacterial protease activity. This effect was mainly attributable to contact with surface-associated mucins rather than those present in the fluid phase. Biofilms of L. fermentum were capable of degrading MUC5B mucins suggesting that this complex glycoprotein can be exploited as a nutrient source by the bacteria.Comparison of the surface proteomes of biofilm cells of L. fermentum in a MUC5B environment with those in nutrient broth using two-dimensional electrophoresis and mass spectroscopy, showed that the enhanced proteolytic activity was associated with increased expression of a glycoprotease; O-sialoglycoprotein endopeptidase, as well as chaperone proteins such as DnaK and trigger factor. CONCLUSIONS Adhesion to mucin-coated surfaces leads to a shift towards a more protease-active phenotype within L. fermentum biofilms and proteases produced within the biofilms can degrade MUC5B mucins. The enhanced proteolytic activity was associated with an increase in O-sialoglycoprotein endopeptidase on the cell surface. We propose that the upregulation of chaperone proteins in the mucin environment may contribute to the protease-active phenotype through activation of the glycopeptidase. This would represent one way for commensal lactobacilli e.g. L. fermentum to exploit complex substrates in their local environment in order to survive on mucosal surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential metabolic activity by dental plaque bacteria in association with two preparations of MUC5B mucins in solution and in biofilms.

Salivary mucin, MUC5B, is an oligomeric glycoprotein, heterogeneous in size and with a diverse repertoire of oligosaccharides, which differ in composition and charge. Since complex salivary glycoproteins are considered to be the major source of nutrients for the oral supragingival microbiota, the major aim of the current study was to determine whether different preparations of non-denatured MUC...

متن کامل

Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp.

Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus spec...

متن کامل

Draft Whole-Genome Sequence of Lactobacillus fermentum LfQi6, Derived from the Human Microbiome

We report a 2.21-Mbp draft whole-genome sequence of Lactobacillus fermentum Qi6 (LfQi6). This strain demonstrates activity against pathogenic biofilms, enhances the skin barrier, and upregulates innate immune defenses. The genome sequence information of this strain will help to identify molecules that hold promise for the discovery of novel therapeutics for dermatological disorders.

متن کامل

Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin.

An adhesion-promoting protein involved in the binding of Lactobacillus fermentum strain 104R to small intestinal mucus from piglets and to partially purified gastric mucin was isolated and characterized. Spent culture supernatant fluid and bacterial cell wall extracts were fractionated by ammonium sulfate precipitation and gel filtration. The active fraction was purified by affinity chromatogra...

متن کامل

Expression of Chlamydia psittaci- and human immunodeficiency virus-derived antigens on the cell surface of Lactobacillus fermentum BR11 as fusions to bspA.

The basic surface protein, BspA, has been used as a fusion partner to direct peptide antigens from the human immunodeficiency virus gp41 protein and the Chlamydia psittaci OmpA protein to the cell surface of Lactobacillus fermentum BR11. BspA has potential utility in the construction of live vaccines and diagnostic reagents.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013